6th Annual Tri-Service Workshop on GeSn and SiGeSn 25-26 October 2023, Colorado Springs, CO

FA8750-15-3-6003 FA9550-15-0001 FA9550-20-F-0005

Characterization of Buffer Layers for Remote Plasma-Enhanced Chemical Vapor Deposition of Germanium-Tin Epitaxial Layers

Stefan Zollner,¹ Bridget Rogers,² Carlos A. Armenta,¹ Gordon J. Grzybowski,³ and Bruce Claflin⁴

¹New Mexico State University, Department of Physics, Las Cruces, NM ²Vanderbilt University, Department of Chemical and Biomolecular Engineering, Nashville, TN ³KBR, Beavercreek, OH ⁴Air Force Research Laboratory, Sensors Directorate, Dayton, OH

BE BOLD. Shape the Future.

Email: <u>zollner@nmsu.edu</u>. WWW: <u>http://femto.nmsu.edu</u>. Ask me about MS/Ph.D. student positions at NMSU.

New Mexico State University, Las Cruces

Land grant institution, Carnegie R2

Comprehensive: Arts and Sciences, Education, Business, Agriculture Ph.D. programs in sciences, engineering, agriculture; Ag extension

14,000 students (11,500 UG, 2,500 GR), 1000 faculty

Minority-serving, Hispanic-serving (60% Hispanic/NA, 26% White) Small-town setting

Military-friendly institution (Army and Air Force ROTC programs)

Community engagement classification (first-generation students, Pell grant recipients)

Physics: BS/BA, MS, PhD degrees. 71 UG and 37 GR students.
12 faculty (HE Nuclear and Materials Physics), 1.7 M\$ expenditures.
ABET-accredited BS in Physics and BS in Engineering Physics

Stefan Zollner, 2023

Ellipsometry at NMSU

Applied physics letters 81 (16), 2992-2994

Ellipsometry on anything (inorganic)

- Metals, insulators, semiconductors
- Mid-IR to vacuum UV
- 10 to 800 K

Ellipsometry tells us a lot about materials quality (not necessarily what we want to know).

<u>Optical critical points of thin-film $Ge_{1-y}Sn_y$ alloys: A comparative $Ge_{1-y}Sn_y / Ge_{1-x}Si_x$</u>	429	2006	Peter Y. Yu Manuel Cardona	
<u>study</u> VR D'costa, CS Cook, AG Birdwell, CL Littler, M Canonico, S Zollner, Physical Review B 73 (12), 125207			Fundamentals of Semiconductors	
Growth and strain compensation effects in the ternary $Si_{1-x-y}Ge_xC_y$ alloy system K Eberl, SS lyer, S Zollner, JC Tsang, FK LeGoues Applied physics letters 60 (24), 3033-3035	404	1992	Physics and Materials Properties	
Ge–Sn semiconductors for band-gap and lattice engineering M Bauer, J Taraci, J Tolle, AVG Chizmeshya, S Zollner, DJ Smith, Applied physics latters 81 (16) 2992-2994	322	2002	Fourth Edition	

🖾 Springei

Introduction

- Buffer layers can improve the quality of subsequent growth of epitaxial layers.
- Examples:
 - Buffer grown at different temperature than target layer (encourage 2D layer growth: Ge on Si).
 - Graded buffer layers (ramp up composition).
 - Superlattice buffers (defect and dislocation control).
- <u>Characterization of thin buffer layers (10-20 nm):</u>
 - Spectroscopic ellipsometry (thickness, refractive index, roughness, band gap)
 - X-ray diffraction (crystallinity, lattice constant, composition
 - X-ray photoelectron spectroscopy (composition, thickness)
 - Atomic force microscopy (roughness, morphology)
 - Optical and electron microscopy
- Objective: Where does the tin go (substitutional, surfactant, beta-tin, interface, etc)?

Epitaxial growth modes

- How does an ellipsometer see such layers?
- Bruggeman Effective Medium Approximation: Mixture of Epilayer and Voids: <n_{eff}> < n_{layer} for island growth
- Need some idea of thickness from growth conditions or XRR, XPS, RBS, etc.

Effective medium approximation (EMA)

Works well for surface roughness (50/50).

J.N. Hilfiker in *Spectroscopic Ellipsometry for Photovoltaics*, ed. by Fujiwara and Collins (Springer, 2018)

Buffer layers grown at different temperatures

but still crystalline (critical points). Probably 3D island growth mode.

Crystallinity in ellipsometry spectra

a-Si: Single broad absorption peak

c-Si: Van Hove singularities (critical points) from different directions in the BZ.

nc-Si: Loss of periodicity: (1) critical points are broadened, (2) indirect absorption is stronger.

Thick crystalline Ge-Sn alloys grown by RPECVD

Buffer layers grown at different temperatures

n_{layer}>n_{substrate} Critical points similar to Ge.

n_{layer}<n_{substrate} Low density, large roughness, but critical points similar to Ge: **Buffer layer is crystalline, Ge-like.**

Plasmon Resonance in Gold Nanoparticles

Gold is not always yellow. Nanoparticle radius $a < \lambda$

$$\alpha = 4\pi a^3 \frac{\varepsilon_m - \varepsilon_d}{\varepsilon_m + 2\epsilon_d}$$

m: metal, d: dielectric Enhance molecular absorption.

Fox, *Optical Properties of Solids* Little, *APL* **98**, 101910 (2011)

400

500

600

700

Wavelength (nm)

0.2

900

800

Plasmon Resonance in β**-Tin Nanoparticles**

Ge-Sn alloys with high tin content grown by MBE "have a broadened peak in ε_2 , near 0.9 eV."

"possibly caused by an intrinsic feature such as from the **band** structure, an extrinsic one such as from a **defect**, or an interference fringe from the substrate".

Answer:

None of the above. This peak is likely a **plasmon resonance** of metallic β -Sn precipitates.

Ellipsometry cannot determine if the beta-tin particles are on the surface, embedded in the layer, or at the substrate/epilayer interface.

D. Imbrenda, APL **113**, 122104 (2018)

Plasmon Resonance in β**-Tin Nanoparticles**

Not an interference fringe.

This Lorentzian peak (0.6 to 0.7 eV) is likely a **plasmon resonance** of metallic β -Sn precipitates.

Low-resolution (powder) x-ray diffraction

SEM and AFM micrographs

500°C substrate 30 sccm He flow through SnCl₄ bubbler RMS roughness≈9.3 nm

RPD02282023GeSn-4

489°C substrate 30 sccm He flow through SnCl₄ bubbler RMS roughness≈11 nm

Atomic force microscopy

2.0 µm

Height Sensor

STAT

-25.0 nm

X-ray photoelectron spectroscopy

- Analysis Conditions
 - Phi 5500 XPS instrument
 - Non-monochromatic Mg $K\alpha$ x-rays (350 W, 25 kV)
 - 93.9 eV pass energy for high resolution spectra
 - As received and sputter cleaned surfaces analyzed
 - 5 keV Ar⁺ ions
 - Rastered over 4 mm x 4 mm area
 - Sputtered until oxygen peak minimized (≈ 120 seconds)
- Quantitation
 - Empirical sensitivity factors
 - Determined from pure element samples
 - Ge 3d5 and Sn 4d transitions used (similar analysis depth for these transitions)
 - Line shapes acquired from standards used for Ge 3d and Sn 4d curve fitting.

X-ray photoelectron spectroscopy

XPS Depth Profiles (acquired in 2022)

Interface defined at point where Ge signal drops to one-half its maximum value.

Conclusion

- Multiple characterization tools are available for thin buffer layers.
- Spectroscopic ellipsometry:
 - Density, void fraction, crystallinity, thickness (with limits)
- Powder x-ray diffraction:
 - Substitutional alpha-Sn
 - Large beta-Sn clusters
- Atomic force microscopy
 - Morphology and surface roughness
- X-ray photoelectron spectroscopy
 - Total tin content, depth profile

Thank you!

